Search results

Search for "flower-like 3D nanostructures" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced
  • selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising
  • material for application as an acetone sensor. Keywords: acetone; flower-like 3D nanostructures; gas sensors; selectivity; titanium dioxide; Introduction The market for resistive-type gas sensors is dominated by materials developed on the base of thin or thick layers composed of polycrystalline metal
PDF
Album
Full Research Paper
Published 15 Nov 2016
Other Beilstein-Institut Open Science Activities